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1. ABSTRACT: This study investigates the potential of integrating artificial intelligence (AI) with 
experimental analysis to optimize fuel mixtures in internal combustion engines for green port 
applications. By evaluating the efficiency and emission reduction capabilities of hydrogen-oxygen 
(HHO) gas and methane as alternative fuels, the research explores a dual-fuel conversion approach for 
conventional internal combustion engines. The AI-driven methodology employs Random Forest 
Regression (RFR) to analyze experimental data and determine the most efficient fuel mixture settings. 
The results indicate that NaOH at a 10% concentration achieves maximum fuel savings, while KOH 
at 12% concentration provides the best COx reduction. Methane injection demonstrates moderate fuel 
savings and emission reductions, highlighting its viability as an alternative fuel. The AI optimization 
process determined the optimal fuel mixture settings, enhancing efficiency, reducing emissions, and 
accelerating the transition to cleaner maritime energy solutions. These findings reinforce the 
effectiveness of AI-based optimization in advancing sustainable fuel strategies and promoting cleaner 
energy solutions for port operations and energy management. 

2. INTRODUCTION 

Maritime transport has rapidly expanded due to the growth of international trade and commercial demands. 
The increasing number of ships brings big challenges to the port, whereas ship emissions is one of the main 
components of port pollution, which greatly influences on the port ecological environment. Maritime port 
authorities around the world have launched a slew of projects aimed at lowering harmful emissions associated 
with port operations . Various approaches have been proposed to develop an alternative energy source in ports. 
Some ports, such as Antwerp and Genoa, decided to use solar energy as an alternative energy source for some 
loads. Various studies have been conducted on using alternative sources for ports and converting them into 
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green ones (Sadek, I. and M. Elgohary.,2020).  Many ports propose to adopt solar energy as an alternative 
source of energy . Wind energy as an approach has been applied at many ports across the world . Another 
potential power source for marine ports is the utilization of tidal and wave energy to power port activities . 
Several researchers have investigated improved energy efficiency and the use of green energy sources to 
reduce pollutant emissions and operation costs along with operational efficiency. These measures are crucial 
aspects of the next-generation port strategy . 

    Internal-combustion engine exhaust emissions contribute significantly to this problem . Xiang Li points out 
the importance of developing a sustainable and low-cost solution to eliminate CO2 emissions from IC engines . 
In contrast, hydrogen  is free from HC, CO, and CO2 emissions  . Hydrogen is gaining popularity as a clean 
fuel and is playing an important role in countries' energy policies , especially since hydrogen may be used as 
a fuel in Internal Combustion Engine (ICE) without causing structural changes or reducing the engine's 
lifespan . 

As a fuel, oxyhydrogen gas shares the same characteristics as hydrogen . HHO gas is a viable source of 
alternative energy . The HHO gas is produced by the separation of H-OH water molecules. It has a high 
calorific value, and one kilogram of HHO has three times the amount of energy as gasoline . Arjun et al. study 
demonstrated that when adding HHO gas to the combustion process reduces fuel consumption from 20% to 
30% . Gad and Abdel Razek illustrated that the addition of HHO gas generated from wet cells improves brake 
thermal efficiency, with the highest reductions in CO (22 %), HC (39 %), NOx  (42 %), and smoke emissions  
(35%)  compared to diesel fuel . Musmar and Al-Rousan tested a small HHO generator on a gasoline engine, 
their findings reveal that the injection of HHO gas reduces fuel consumption, NOx, and CO by 30%, 50%, and 
20%, respectively . Raif proves that HHO enrichments enhance brake torque and power outputs while 
decreasing brake-specific fuel consumption .  

Since methane (CH4), the major component of natural gas, has a high hydrogen content, it is far cleaner 
than other fossil fuels . It has aroused great interest as a potential next-generation energy source. Furthermore, 
biomass is regarded as a renewable source of CH4 . In recent years, several research programs have 
investigated renewable methane from biomass. Tripathi et al. investigated the effects of methane enrichment 
on emissions of a ICE, concluding that using CH4 in dual fuel mode without significant engine modification 
is a viable option for reducing emissions . Biernat and Samson-Brk found out that using methane fuel reduces 
pollutant emissions  whereas CO emissions are reduced by 30%, HC emissions are reduced by 70%, NOx 
emissions are reduced by 50%, and PM emissions are eliminated .  

The maritime industry is facing increasing pressure to transition towards sustainable energy solutions due 
to growing environmental and regulatory demands. Traditional internal combustion engines contribute 
significantly to greenhouse gas emissions, necessitating the development of alternative fuel solutions that 
reduce environmental impact without compromising efficiency. While previous studies have explored 
hydrogen and methane as cleaner fuel options, optimizing their fuel mixture ratios remains a challenge due to 
the numerous variables involved, including catalyst concentrations, fuel injection rates, and combustion 
efficiency. 

A major limitation in previous research is the reliance on a trial-and-error approach to determine the most 
effective fuel mixture. This process is time-consuming, costly, and requires extensive experimental testing to 
achieve an optimal balance between fuel savings and emission reductions. The lack of a systematic 
optimization framework for selecting the ideal fuel ratio has hindered large-scale adoption of alternative fuels 
in maritime applications. 
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This research bridges this gap by employing an AI-driven approach to streamline the fuel optimization 
process. By leveraging machine learning algorithms, specifically Random Forest Regression (RFR), this study 
automates the analysis of experimental data to identify the most effective fuel mixtures. AI enables the 
evaluation of multiple parameters simultaneously, significantly reducing the need for manual experimentation 
while ensuring accuracy in results. The integration of AI not only enhances the precision of fuel optimization 
but also accelerates the adoption of cleaner fuels by simplifying decision-making for maritime energy systems. 

Through this study, we demonstrate how AI can revolutionize fuel optimization in green port applications, 
making the transition to sustainable energy more efficient, cost-effective, and scalable. By combining 
experimental validation with AI-driven insights, this research establishes a framework for enhancing fuel 
efficiency, reducing emissions, and supporting maritime decarbonization efforts. 

3. METHODOLOGY 

This study employs a hybrid approach, integrating experimental testing and AI-driven optimization to 
evaluate the performance of dual-fuel internal combustion engines (ICEs) using hydrogen-oxygen (HHO) gas 
and methane. The methodology consists of several structured stages, ensuring a systematic approach to fuel 
optimization. The experimental setup included two distinct test conditions: HHO-Benzene-Dual-Fuel Setup – 
Evaluating the impact of HHO gas injection on fuel efficiency and emissions. Methane -Benzene Dual-Fuel 
Setup – Analyzing the influence of methane injection under identical experimental conditions. 

 

3.1 Experimental system configuration 

To evaluate dual-fuel engine performance, an internal combustion engine (ICE) was modified to integrate 
both HHO gas and methane, tested under separate conditions. 

Test 1: Benzene-HHO Dual-Fuel Configuration 

- The HHO generator system was connected to the engine’s air intake manifold. 
- NaOH and KOH catalysts were used at varying concentrations (2% to 12%) to enhance HHO gas 

production. 
- Voltage variation (11.1 V - 12.5 V) was applied to determine its impact on efficiency. 

Test 2: Benzene-Methane Dual-Fuel Configuration 

- Methane was supplied from a pressurized tank and injected into the engine’s air intake manifold. 

Experimental 
Setup

•Configure the
internal
combustion
engine (ICE) for
HHO and
methane fuel
integration.

Data 
Collection

•Measure fuel
consumption and
emission levels
(COx, SOx,
NOx) under
different fuel
conditions.

Data 
Preprocessing

•Standardize
experimental
data and prepare
it for AI-driven
analysis.

AI Model 
Training

•Implement
Random Forest
Regression
(RFR) for fuel
mixture
optimization.

AI 
Optimization 

•AI selects the
most efficient
fuel ratios based
on machine
learning
analysis.

Performance 
Evaluation

•AI-optimized
results are
compared
against manual
trial-and-error
methods.
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- Flow rates ranged from 0.005 to 0.0092 LPM to test its effects on combustion performance. 
- A pressure regulator and flow meter-controlled methane injection rates. 

Emission Measurement: 

- A Testo-350 flue gas analyzer was used to record COx, SOx, and NOx emissions for both benzene-
HHO and benzene-methane setups. 

To ensure the accuracy of the recorded experimental data, an uncertainty analysis was conducted. The Testo 
350 analyzer, equipped with sensors for gases such as CO, NO, NO₂, SO₂, H₂S, CₓHᵧ, and CO₂, offers a 
measurement accuracy of ±5% of the reading for most gas components. For instance, the CO sensor has a 
measurement range of 0 to 10,000 ppm with an accuracy of ±5% of the reading. Similarly, the NO sensor 
ranges from 0 to 4,000 ppm with an accuracy of ±5%. These specifications are in line with the manufacturer's 
data. Additionally, the gas flow meter and multimeter used in the experiments have uncertainties of ±1.5% and 
±1.0%, respectively. These uncertainties were considered during data analysis to ensure the reliability of the 
results. 

3.2 Data Collection and Preprocessing 

Experimental data was collected for each fuel combination: 

- Fuel consumption was measured in L/hr. for each setup. 
- Emissions data was collected separately for benzene-HHO and benzene-methane conditions. 

Data Preprocessing: 

- The dataset was cleaned, normalized, and structured for AI analysis. 
- Key parameters such as fuel ratio, catalyst concentration, voltage, and methane flow rate were 

isolated for model training. 

3.3 AI Optimization Process 

Several AI-based techniques, such as Artificial Neural Networks (ANN), Gradient Boosting Models 
(GBM), and Genetic Algorithms (GA), have been applied to energy optimization. However, Random Forest 
Regression (RFR) was selected due to its superior ability to handle non-linear relationships, interpretability, 
and robustness when working with small experimental datasets. 

To determine the optimal fuel mixture, the model was trained separately for each fuel condition: 

- Benzene-HHO Optimization: AI analyzed the impact of HHO gas concentration, voltage, and 
catalyst selection on fuel savings and emissions. 

- Benzene-Methane Optimization: AI determined the optimal methane flow rate and injection timing 
to maximize efficiency. 

A total of 72 experimental trials were conducted, covering various catalyst concentrations, applied voltages, 
and gas flow rates. The dataset was processed and analyzed using AI-based optimization rather than traditional 
statistical regression. The cross-validation method was applied, ensuring the model was tested across different 
subsets of data to enhance robustness. Given the dataset size, hyperparameter tuning was conducted to 
determine the optimal number of decision trees, balancing computational efficiency and model accuracy rather 
than simply using 100 trees by default. After testing configurations of 10, 20, 50, and 100 trees, the 20-tree 
model was selected as the most efficient for fuel optimization. 
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3.4 Verification and Comparison 

The AI-based optimization was conducted by analyzing fuel consumption and emission reduction across 
multiple trials, to identify the most efficient fuel combinations based on existing experimental data. The model 
adjusted for key performance parameters (catalyst concentration, voltage, fuel flow rate) and suggested the 
optimal operating conditions to maximize efficiency. These AI-driven recommendations were experimentally 
retested, confirming that the optimized parameters achieved superior fuel savings and emission reductions 
compared to non-optimized settings.  

4. Experimental Setup 

4.1 HHO System  
Fig. 1 shows a schematic diagram for the system used. The HHO system consists of a dry cell electrolyzer, 

water tank, power supply, internal combustion engine, and exhaust gas analyzer (Testo-350). The electrolysis 
unit generates HHO gas, which is injected into the engine's air manifold. The system is controlled via a 
regulated power supply that adjusts voltage and amperage to optimize gas production.  

 
Fig. 1 : HHO System configuration 

 

4.1.1 HHO Generator Design  

The electrolysis unit is constructed using stainless steel plates housed between acrylic walls to form 
multiple water cells. The system includes PVC fittings for gas intake and water refilling, with a bubbler acting 
as a safety device to prevent backflow. The power supply regulates electrical input, ensuring HHO gas 
generation controlled for engine combustion enhancement.  

4.1.2 Experimental Setup for HHO Injection 

The internal combustion engine was modified to accommodate HHO gas injection. The air manifold was 
fitted with a dedicated HHO inlet hose, ensuring proper air-fuel mixing. Engine parameters such as fuel flow 
rate and emission levels were monitored using the Testo-350 flue gas analyzer to assess the impact of HHO 
on efficiency. The engine is shown in Fig. 2, and its specifications are summarized in Table 1.  
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Fig. 2: Internal combustion engine 

 
Table 1. Engine specification 

Specification Value 
Cylinder 1 

Max. Horsepower (HP) 6.5 / 3600 rpm 
Engine Type Gasoline 

Displacement (CC) 196 
Bore X Stroke (mm) 68 X 54 

Ignition Transistor electric / inductive firing 
Rotation Anti-clockwise from output 

Manufacturer Top Marshall 

4.2 Methane System  
The Methane system comprises a pressurized methane tank, regulator, flow meter, shut-off valve, and 

flashback arrestor. Methane is injected directly into the engine's air manifold, with a pressure regulator 
ensuring consistent flow rates for controlled combustion. 

 
Fig. 3 : Methane system configuration 

 
Fig. 3 shows a schematic diagram of the Methane system. The main system consists of a) methane gas tank, 

b) gas tank main valve, c) pressure gauge, d) pressure regulator, e) gas flow meter, f) Flashback arrestor, 
Gasoline engine, and an exhaust gas analyzer. 



Arab Academy for Science, Technology, and Maritime Transport 
The International Maritime and Logistics Conference “MARLOG 14” 

“Artificial Intelligence Implementations  
Towards Shaping the Future of Digital World” 

23 – 25 February 2025 
 

7 
 

4.2.1 Experimental Setup for Methane Injection 

To evaluate the performance of methane as a dual-fuel source, the methane tank was connected to the 
engine intake system via a pressure hose. A gas flow meter monitored injection rates, while safety measures, 
including a flashback arrestor, were implemented to prevent hazards. Methane pressure was adjusted to match 
atmospheric levels, ensuring consistent comparison with the HHO test setup. 

4.3 Testing Phase 
Both systems were installed separately to facilitate independent testing under identical operating conditions. 

Measurements were conducted at constant engine speed (70% of max RPM) to maintain consistency across 
trials. Fig. 4 and Fig.5 shows the final installation of the system. 

 
Fig. 4 :  HHO system installation 

   
Fig.5 : Methane system installation 

4.3 Data Collection and Measurement 
For both Benzene-HHO and Benzene-Methane experiments, fuel consumption and COx, SOx, and NOx 

emissions were recorded. Key experimental parameters such as voltage, catalyst concentration, and methane 
flow rate were carefully monitored to ensure reliable data collection. 

 
The time elapsed in each run until the engine stopped was recorded and converted to fuel consumption 

(liters per hour) using the formula:  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �3600×0.1
𝑇𝑇

�   
(1) 

Where T represents the total running time (seconds) for each fuel mixture test. All measurements were 
taken under ambient temperature, atmospheric pressure, and a constant engine speed to ensure consistency. 
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5. Machine Learning Optimization Approach 
The AI model utilizes Random Forest Regression (RFR) to analyze experimental data and determine 

optimal fuel mixtures for Benzene-HHO and Benzene-Methane configurations. The model is trained on fuel 
efficiency and emission data, learning patterns from multiple parameters such as catalyst concentration, 
voltage levels, and methane injection rates. By evaluating these factors, the AI optimizes fuel composition to 
achieve maximum efficiency and minimum emissions, significantly reducing the need for manual trial-and-
error experimentation. 



Arab Academy for Science, Technology, and Maritime Transport 
The International Maritime and Logistics Conference “MARLOG 14” 

“Artificial Intelligence Implementations  
Towards Shaping the Future of Digital World” 

23 – 25 February 2025 
 

MARLOG 14  9 

 

 

5.1 Data Processing and Feature Selection 
The dataset was collected from 72 experimental trials, covering various fuel ratios and operating 

conditions. To ensure data integrity and suitability for AI-driven optimization, the following 
preprocessing steps were applied: 

 

- Standardization: The dataset was standardized using StandardScaler to normalize feature 
values and improve model stability. 

- Handling Missing Data: Missing values were addressed through linear interpolation, 
ensuring data continuity without introducing bias. 

- Feature Selection: Key optimization parameters were identified, including Catalyst 
concentration (%), Electrolysis voltage (V), HHO and Methane flow rates (LPM), Fuel 
savings (%), Emission reduction in COx, SOx, and NOx (%) 

 
A cross-validation approach was applied. This method ensures that the model was evaluated across 

different subsets of data, enhancing its robustness and reducing overfitting. The AI model was trained 
to optimize fuel mixture selection, refining decision-making. 

Data Input
•Record fuel consumption and
emission levels from experimental
trials

Data Preprocessing
•Standardize data (using StandardScaler).
•Handle missing values (using linear
interpolation).

Cross-Validation 
•K-fold cross-validation ensures model
robustness across multiple subsets of data

Model Training
•Random Forest Regression analyzes
the relationship between input
variables.

Optimization & Prediction
•AI finds the optimal fuel mixture for
efficiency & emission reduction.

Retesting
•AI-recommended fuel mixtures were
retested experimentally and compared to
manual optimization results.

•Performance was evaluated using R² Score
and Mean Absolute Error (MAE) for
accuracy.
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5.2 Random Forest Regression (RFR) Model 

To ensure a data-driven optimization approach, different AI models were tested, including Support 
Vector Regression (SVR) and Decision Trees. The Random Forest model was selected due to its ability 
to handle complex, multi-variable relationships without overfitting. However, instead of the 
conventional 100 trees, performance testing identified that a 20-tree model was sufficient for this dataset, 
providing accurate fuel efficiency optimization without excessive computational load. The final model 
did not predict future values but rather identified the most effective fuel mixture settings based on 
experimental data, ensuring practical real-world applicability. 

Feature Importance Analysis: The model ranked the most influential parameters, revealing that 
catalyst concentration, voltage, and fuel injection rate were the most significant factors affecting 
efficiency and emissions. 

The importance of a feature   (𝒇𝒇𝒊𝒊)   in Random Forest Regression is calculated as: 

𝐹𝐹𝐹𝐹 (𝑓𝑓𝑖𝑖) =
1
𝑇𝑇
�(𝐹𝐹𝑡𝑡(𝑓𝑓𝑖𝑖))
𝑇𝑇

𝑡𝑡=1

 
(2) 

Where: 𝐹𝐹𝐹𝐹 (𝑓𝑓𝑖𝑖) = Feature Importance of (𝑓𝑓𝑖𝑖), T = Total number of decision trees 𝐹𝐹𝑡𝑡(𝑓𝑓𝑖𝑖) = = 
Importance of feature (𝑓𝑓𝑖𝑖) in tree t 

5.3 Performance Evaluation Metrics 

To assess the model’s performance, two evaluation metrics were used: 

- Mean Absolute Error (MAE): Measures the average absolute difference between actual and 
AI-optimized values. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑐𝑐
�|𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |
𝑛𝑛

𝑖𝑖=1

 
(3) 

where: 𝑐𝑐 = Total number of samples, 𝑦𝑦𝑖𝑖 = Actual fuel efficiency/emission value,  𝑦𝑦𝚤𝚤�= AI-
optimized fuel efficiency/emission value. 

- R² Score (Coefficient of Determination): Evaluates how well the model explains variance in 
the dataset. 

𝑅𝑅2 = 1 −  
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
 

(4) 

where:  𝑦𝑦� = Mean of actual values, ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2 Residual Sum of Squares (RSS), ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2= 
Total Sum of Squares (TSS). 

The model achieved an R² score of 0.94, demonstrating its high accuracy in optimizing fuel efficiency 
and emissions reduction through AI-driven fuel mixture selection. 
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6. Results and Discussion 

This table summarizes AI-optimized fuel ratios, highlighting their fuel efficiency improvements and 
emission reductions. 

Table 2. Fuel Savings and Emission Reduction and for Different Dual-Fuel Setups 

Fuel Type Optimal Catalyst 
Concentration (%) 

Optimal Voltage 
(V) 

Fuel 
Savings  

COx 
Reduction  

SOx 
Reduction  

Benzene-HHO (NaOH) 10% 12.4V 58.1% 75.9% 76.1% 

Benzene-HHO (KOH) 12% 12.51V 53.8% 79.2% 78.3% 

Benzene-Methane N/A Atmospheric 
Pressure 49.1% 58.6% 59.9% 

 

 
Figure 6 :  Fuel Savings and Emission Reduction and for Different Dual-Fuel Setups 

6.1 HHO Gas Optimization  

The experimental data was input into the optimization model, which determined the optimal catalyst 
concentration and voltage settings for maximum fuel efficiency and minimum emissions. The results 
were then verified through experimental retesting to confirm the AI-optimized fuel mixture.  The NaOH 
catalyst at 10% concentration provided the highest fuel savings of 58.1%, with COx reduced by 75.9%, 
SOx by 76.1%, and NOx by 65.1%. The applied voltage of 12.4V contributed to enhanced HHO 
production, leading to improved combustion efficiency. The KOH catalyst at 12% concentration 
demonstrated greater COx reduction (79.2%), while fuel savings were slightly lower at 53.8%. The 
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applied voltage of 12.51V ensured stable gas production, balancing fuel efficiency and emission 
reduction. Retesting with the AI-optimized fuel mixture confirmed that the model's suggested conditions 
improved efficiency while maintaining stability, demonstrating the reliability of AI-based optimization. 
The findings align with previous research, such as , 10% hydrogen reduces the smoke by 65%, reduces 
CO2 and CO by about 27% and 32% respectively , and NOX emissions are reduced by 81.35% . 

The greater COx reduction achieved with KOH at 12% concentration can be attributed to its increased 
catalytic activity, which enhances combustion efficiency. In contrast, NaOH at 10% provided superior 
fuel savings due to its higher ionization potential, leading to more effective HHO gas production. 

6.2 Methane Gas Optimization 

 Methane was analyzed separately, with the experimental data serving as input for the AI 
optimization model, which determined the most efficient methane flow rate for fuel savings and 
emission reduction. The model’s recommendations were then verified by re-running the experiments 
under optimized conditions. The highest methane efficiency was observed at a flow rate between 0.005 
and 0.0092 LPM, leading to a 49.1% reduction in fuel consumption. COx emissions decreased by 58.6%, 
SOx by 59.9%, and NOx by 60.8%, demonstrating methane’s potential as a cleaner fuel alternative. 
While methane reduced emissions, its fuel savings were slightly lower than HHO, partly due to its lower 
combustion enhancement properties compared to hydrogen. Retesting under AI-optimized methane 
conditions confirmed that the selected flow rates and pressure settings improved efficiency while 
maintaining controlled emissions, validating the AI model’s effectiveness. Despite its advantages, 
methane requires specialized storage infrastructure, which may pose challenges for maritime 
applications, affecting its large-scale adoption. 

7. Conclusion 

This study applied an AI-driven optimization approach to enhance fuel efficiency and reduce 
emissions in dual-fuel internal combustion engines for green port applications. The Random Forest-
based optimization model, configured with an optimal 20-tree setup, successfully identified the best fuel 
mixture parameters, improving decision-making over conventional trial-and-error methods. The AI-
optimized settings were validated through experimental retesting, confirming that NaOH at 10% 
concentration achieved the highest fuel savings (58.1%), while KOH at 12% concentration provided the 
greatest COx reduction (79.2%). Methane fuel, though effective in emission reduction, demonstrated 
slightly lower efficiency than HHO-based mixtures. 

The model achieved an R² score of 0.94, confirming its high accuracy in optimizing fuel parameters. 
This research highlights AI’s potential to dynamically adjust fuel mixtures, supporting sustainable 
maritime decarbonization. Future research will focus on integrating real-time AI-driven fuel mixture 
adjustments into operational port environments. Expanding the dataset with real-world maritime fuel 
consumption data and applying deep learning techniques will further improve the adaptability and 
scalability of AI-driven fuel optimization for sustainable port operations. 
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