

Integrated allocation of berths, quay cranes and internal trucks in container terminal

MARLOG 4 A Sustainable Development Perspective for Mega Projects

Eng/ Ahmed Karam

OUTLINES

- □ Terminal operations.
- □ Berth allocation planning.
- □ Assignment of quay cranes and internal trucks.
- □ The integrated allocation of berths ,quay cranes and internal trucks .

Berth allocation planning

Example of Berth plan

The berth allocation plan determines

- The berthing time,
- Berthing position and
- Departing time of each vessel

Wednesday, April 01, 2015

Integer programming model (cont.)

[PS] Minimize $\sum_{i \in B} \sum_{j \in V} \sum_{k \in O} \{ (T-k+1)C_{ij} + S_i - A_j \} x_{ijk}$

Integer programming model (cont.)

Example of Constraints

$$\sum_{j \in V} x_{ijk} \leq 1 \quad \forall i \in B, \ k \in O,$$
 (3) Enforces that every berth services up to one vessel at any time.

Integer programming model (cont.)

Minimize
$$\sum_{i \in B} \sum_{j \in V} \sum_{k \in O} \{ (T - k + 1)C_{ij} + S_i - A_j \} x_{ijk}$$
 Objective

Subject to

[PS]

Constraints

Ensures that every ship must be serviced. (2) $\sum_{i\in B} \sum_{k\in O} x_{ijk} = 1 \quad \forall j \in V,$ $\sum_{j\in V} x_{ijk} \leqslant 1 \quad \forall i \in B, \ k \in O,$ (3)

 $x_{ijk} \in \{0,1\} \quad \forall i \in B, \ j \in V, \ k \in O,$ ⁽⁴⁾

Ensures that every berth services up to one vessel at any time.

Binary constraint

Numerical example

Data of vessels							
Vessel	Expected h	andling time	Expected arrival time				
	At berth1	At berth2	Expected arrivat time				
А	3	3	2				
В	2	3	2				
С	3	3	5				
Berth availability							
Berth 1			1				
Berth 2 1			1				

x_{2A1}=1 x_{2C2}=1 x_{1B1}=1

11

Practical considerations

Practical considerations

Wednesday, April 01, 2015

Handling time estimation

□ In the berth allocation model, the handling time of each vessel is assumed to be known advance.

Example of

quay cranes and internal trucks assignments

- Non crossing constraint of quay cranes is respected
- The assignment of internal trucks depends on
 - The work load assigned to each QC.
 - The deviation between the berth and yard.

Quay crane and internal truck assignment model

Inputs:

- No. of available quay cranes and internal trucks.
- Handling rate of the quay crane (TEU/hour).
- Characteristics of each vessel in the berth plan (berthing position, berthing time, completion time, length of vessel).

Decision variables (solution)

- q_{vt} Number of quay cranes assigned to vessel *v* in time period *t*.
- Number of internal trucks assigned to quay crane of vessel *v* at time *t*. qt

The change in the number of quay cranes assigned to vessel v at time t. f_{vt}

Quay crane and internal truck assignment model (cont.)

Objective function : Two objectives

 $\begin{array}{ll} \textit{Minimize} & \frac{1}{n} (\sum_{v \in V} z_v + \sum_{t \in T} \sum_{v \in V} \mid f_{vt} \mid) \\ \hline & & & \\ \hline \end{array}$

Quay crane and internal truck assignment model (cont.)

Example of constraints

$$\sum_{v \in V} q_{vt}^k \leq$$

 $\forall k \in K, t \in T$

Constraint(5) :

Quay crane and internal truck assignment model (Cont.)

 $\forall v \in V, t = ST_{v}, ..., CT_{v}$

Subject to

 $x_{vt} \geq x_{v(t+1)}$

 $Sr \sum_{k \in K} \sum_{t = STv}^{CT_{v}} qt_{vt}^{k} \geq NC_{v} \quad \forall v \in V$

$$\sum_{k \in K} \sum_{t=1}^{STv -1} qt_{it}^{k} = 0 \qquad \forall v \in V$$
$$\sum_{k \in K} \sum_{t=1}^{N} qt_{vt}^{k} = 0 \qquad \forall v \in V$$

 $k \in K$ $t = CT_v + 1$

$$\sum_{v \in V} q_{vt}^{k} \leq 1 \qquad \forall k \in K, t \in T$$

(1)
Constraint(1):Flow conservation

Constraint (2):

- (2) Ensures that the containers on each vessel must be completely handled within its berthing stay.
- (3) Constraints (3)-(4): Operational constraints:
 - ensures that no internal trucks or
- (4) quay

(5)

cranes are used in handling containers on any vessel outside its time window.

Constraint(5) :

Assign each quay crane to only one vessel at each time period

Quay crane and in	nternal truck assigr	nment model
$\sum_{k=1}^{k} q_{vt}^{k} \leq q_{max}^{v} \cdot x_{vt}$		Constraints (6)-(7) : quay crane
$\sum_{k \in K} q^k \geq q^v \dots x$	$\forall v \in V, t = ST_{v},, CT_{v}$	 (6) allocation ➡ Quay cranes allocated to each
$\sum_{k \in K} q_{vt} = q_{\min} \cdots v_{vt}$	$\forall v \in V, t = ST_v,, CT_v$	(7) vessel must be between the minimum and maximum numbers Constraints (8)-(9): Internal truck
$qt_{vt}^{k} \leq qt_{\max} \cdot q_{vt}^{k}$	$\forall v \in V, t \in T, k \in K$	 (8) allocation internal trucks allocated to each
$qt_{vt}^{\kappa} \geq qt_{\min} \cdot q_{vt}^{\kappa}$	$\forall v \in V, t \in T, k \in K$	(9) quay crane must be between (9) the minimum and maximum
$\sum_{k \in K} \sum_{v \in V} q_{vt}^k \leq Q$	$\forall t \in T$	(10) → Constrain(10): Quay crane capacity constraint.
$\sum_{k \in K} \sum_{v \in V} qt_{vt}^k \leq QT$	$\forall t \in T$	(11) Constrain(11): internal truck capacity constraint.

Quay crane and internal truck assignment model (cont.)

$$t \cdot x_{vt} - ST_v \le z_v$$
 $\forall v \in V, t = ST_v, ..., CT_v$ (12) Constraints (12):
Define handling time of the vessel

 $\sum q_{v(t+1)}^{k} - \sum q_{vt}^{k} \leq f_{vt} \qquad \forall v \in V, t = ST_{v}, ..., CT_{v} - 1 (13) \implies \text{Constraints (13):}$ Define shifts of quay cranes $k \in K$ $k \in K$

$$f_{it}$$
, qt_{vt}^{k} Integer and x_{vt}^{k} , $q_{vt}^{k} \in \{0,1\}$

 $(14) \rightarrow$ Constraints (14): Integer and binary constraints

Integrated allocation of berths, quay cranes and internal trucks

□Now, we have two models

- Berth allocation model
- QC and IT assignment model

How to solve them?

Traditional method

- Handling times of ships are assumed to solve the berth allocation model.
- The assignments of quay cranes and internal trucks are determined sequentially.
- Resources are wasted if handling times are assumed large.

Disadvantage :very complex

Case study based on Alexandria port data

Vessel name	Length (m)	Arrival time	Expected completion time	Containers (TEUs)	Max. no. of quay cranes	Min. no. of quay cranes
V1	247	1	27	2345	5	3
V2	96	11	27	607	2	2
V3	97	28	31	150	2	2
V4	145	30	42	683	3	2
V5	145	33	38	301	3	2
V6	147	42	53	907	3	2
V7	246	53	64	1074	5	3
V8	197	74	85	967	4	2
V9	95	77	80	104	2	2
V10	198	88	107	1921	4	2
V11	146	112	125	1053	3	2
V12	149	140	152	593	3	2
V13	149	143	148	291	3	2
V14	146	152	163	917	3	2

Wednesday, April 01, 2015

Time periods (hour)

Conclusions

The berth allocation model can be used to

- Maximize utilization of the berth.
- Reduce service time of vessels.
- Increase customer satisfaction.

The quay crane and internal truck assignment model can be used to

- Provide more reliable estimate for the handling times
- Increase utilization of quay cranes and internal trucks
- Reduce operation costs .

The simultaneous solution approach can improve the quality of the handling plan compared to the traditional method.

Wednesday, April 01, 2015

28