







#### Special Session on Modeling and Analysis of Container Terminal Operations





MARLOG 4 A Sustainable Development Perspective for Mega Projects

Dr Amr B. Eltawil





March 31, 2015

#### World Seaborne Trade Trends

#### **Development of Containerized Trade**



#### Source, UNCTAD, REVIEW OF MARITIME TRANSPORT 2014

### The Suez Canal Corridor

- Suez 21 "the Suez economic corridor" is going to provide Egypt a fully integrated system of trade, industry, transport, logistics, and technology within a dynamic region, supported by rail, air, manufacturing clusters and a cluster of container terminals and ports.
- Developing the Suez Canal corridor will transform Egypt into one of the world's leading logistics hubs connecting European, Asian, and African markets.
- This will result in increased container traffic in all ports of Egypt.









#### **Container Terminal Operations**

- A container terminal is an intermodal interface that usually connects container vessels on sea with trucks on land.
- One of the main performance measures of a port container terminal is the turn-around time or service *time* at the port including:
  - berthing,
  - unloading,
  - Loading, and
  - Departure.
- Minimization of turn-around tipe
- Optimization of resource scheduling & utilization
- Optimization of container stacking & handling









#### Container Yard Planning Decisions (CYPDs)



#### Container Terminal Team in EJUST



## **Special Session Topics**

- The Industrial Engineering and Systems Management team of the Egypt-Japan University of Science and Technology (E-JUST) will cover some aspects of the following container terminal planning and management decision problems:
  - Berth allocation.
  - Quay crane assignment.
  - Transportation trucks allocation.
  - Container pre-marshalling.
  - Container terminal simulation.

## Acknowledgment

- Special Thanks to the cooperative staff of Alexandria Container and Cargo Handling Company:
  - Adm. Alaa-eldin Ma'moon Nada
  - Eng Marcel Sharobeem
  - Mr Mohamed Abdlerazik
  - Mr Ashraf Anis























Special Session on Modeling and Analysis of Container Terminal Operations





Introduction to Container Terminal Planning and Operational Decisions





March 31, 2015

## Outline







Container Yard Planning Decisions

Berth Allocation

Quay Crane Assignment and Scheduling

Storage Space Allocation

Container Pre-marshalling

Planning and Scheduling of Equipment







#### Hierarchical Relations Between CY problems



Zhang et al. 2003 (5)

#### Complexity of Container Yard Planning Decision Problems

- The need for optimization using methods of operations research in container terminal operation has become more and more important in recent years.
- This is because the logistics especially of large container terminals has already reached a degree of complexity that further improvements require scientific methods.
- The impact of concurrent methods of logistics and optimization can no longer be judged by operations experts alone.
- Objective methods are necessary to support decisions.
- Such decisions are nowadays unthinkable without the effective and efficient use of information technology as well as optimization and operations research methods (Steeken et al 2004<sup>2</sup>).





#### Analytical Closed Form Solutions

- Decision Variables:
  - Quantities transported from each ship (A, B, c) to each yard  $(1,2,3,4,5,6) = X_{A1}, X_{A2}, ..., X_{ij}, ..., X_{C6}$
- Objective function
  - Minimize  $\Sigma C_{ij} X_{ij} = 60 X_{A1} + 70 X_{A2} + ... + 40 X_{C6}$
- Constraints, Ship supply
  - Ship A:  $X_{A1} + X_{A2} + X_{A3} + X_{A4} + X_{A5} + X_{A6} \le 100$
  - Ship B:  $X_{B1} + ... \le 120$
  - Ship C: X<sub>C1</sub> + ... ≤ 80
- Constraints, Yard Capacity
  - Yard 1:  $X_{A1} + X_{B1} + X_{C1} = 40$
  - Yard 2:  $X_{A2} + X_{B2} + X_{C2} = 70$
  - Same for Yard 3, 4, 5, 6







#### **Excel Solver**





15

#### Heuristics and Meta-heuristics

- Metaheuristic designates a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.
- Metaheuristics make few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions.
- However, metaheuristics do not guarantee an optimal solution is ever found.
  - Graph search methods
    - Blind search
    - Informed search
  - Trajectory search methods
    - Simulated annealing
    - Tabu search
  - Evolutionary methods: Genetic algorithms
  - Swarm intelligence: ants colony, PSO

<figure>









## **Discrete Event Simulation**

- In discrete-event simulation, the operation of a system is represented as a chronological sequence of events.
- Each event occurs at an instant in time and marks a change of state in the system.
- Examples of general simulation software:
  - Arena, Promodel.
- Dedicated simulation library for container Terminal Simulation:
  - FleXsim CT.
  - Chesscon (ISL).









### **CYP** Decisions

Berth Allocation Problem (BAP) Quay Crane Assignment (QCAP)

## **Problem Description**

• The problem of allocating ships to the proper quay locations is referred as the Berth Allocation Problem (BAP).







#### Quay Crane Assignment Problem (QCAP)

- A feasible berth plan and a set of identical QCs are given.
- For all the vessels included in the berth plan, the volume of containers to be loaded and/or unloaded is known as well as the maximum number of cranes allowed to serve it simultaneously.
- The problem is to assign cranes to vessels such that all required transshipments of containers can be fulfilled





#### Integrated BAP, QCAP, QCSP

- BA, QCA, QCS decisions can be made in a sequential fashion. This way the overall problem complexity of seaside operations planning is broken down into a series of decisions.
- Imai et al (2008) illustrated the simultaneous berth and quay crane allocation problem that minimizes the total service time and a genetic algorithm based heuristic based solution.







#### CYP Decisions Storage Space Assignment and Location Assignment









#### **CYP** Decisions

**Container Pre-marshalling** 

## **Problem Definition**

#### Objective









The optimization goal is to minimize the number of movements required to transform the container yard from its initial layout to its final layout.

#### Outputs

 The optimum Sequence of containers movements to reach the desired layout







#### **Container Pre-marshalling**







![](_page_28_Picture_0.jpeg)

![](_page_29_Picture_0.jpeg)

## Complexity of scheduling

![](_page_30_Picture_2.jpeg)

- The scheduling problems in container yard are:
  - Multi-objective
  - Complex
- Scheduling problem for loading or unloading containers is also NP-hard.
- Therefore, the optimization of the operation is <u>too</u>
  <u>complex</u> to be solved by mathematical programming model alone.
- Therefore, there are two approaches for solving this problem:
  - Scheduling for each set of equipment separately (QC scheduling is the most important)
  - Solving the problem using Simulation tool.

# Simulation Modeling and Analysis of Container Terminals

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

## Conclusion

- Eng Ahmed Karam, MSc
  - Allocating Berths, Quay Crane And Internal Trucks In Container **Terminals**
- Dr Mohamed Gheith, PhD Container pre-marshalling
- Eng Omina Reda, Bsc
  - Container Terminal Modeling and **Analysis using Discrete Event** Simulation

![](_page_32_Picture_7.jpeg)

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_9.jpeg)

![](_page_32_Picture_10.jpeg)

![](_page_32_Picture_11.jpeg)

![](_page_32_Picture_12.jpeg)

![](_page_32_Picture_13.jpeg)

![](_page_32_Picture_14.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

#### Special Session on Modeling and Analysis of Container Terminal Operations

![](_page_33_Picture_5.jpeg)

![](_page_33_Picture_6.jpeg)

![](_page_33_Picture_7.jpeg)

![](_page_33_Picture_8.jpeg)

March 31, 2015

## Thank you !